Modulation of peripheral μ-opioid analgesia by σ1 receptors.
نویسندگان
چکیده
We evaluated the effects of σ1-receptor inhibition on μ-opioid-induced mechanical antinociception and constipation. σ1-Knockout mice exhibited marked mechanical antinociception in response to several μ-opioid analgesics (fentanyl, oxycodone, morphine, buprenorphine, and tramadol) at systemic (subcutaneous) doses that were inactive in wild-type mice and even unmasked the antinociceptive effects of the peripheral μ-opioid agonist loperamide. Likewise, systemic (subcutaneous) or local (intraplantar) treatment of wild-type mice with the selective σ1 antagonists BD-1063 [1-[2-(3,4-dichlorophenyl)ethyl]-4-methylpiperazine dihydrochloride] or S1RA [4-[2-[[5-methyl-1-(2-naphthalenyl)1H-pyrazol-3-yl]oxy]ethyl] morpholine hydrochloride] potentiated μ-opioid antinociception; these effects were fully reversed by the σ1 agonist PRE-084 [2-(4-morpholinethyl)1-phenylcyclohexanecarboxylate) hydrochloride], showing the selectivity of the pharmacological approach. The μ-opioid antinociception potentiated by σ1 inhibition (by σ1-receptor knockout or σ1-pharmacological antagonism) was more sensitive to the peripherally restricted opioid antagonist naloxone methiodide than opioid antinociception under normal conditions, indicating a key role for peripheral opioid receptors in the enhanced antinociception. Direct interaction between the opioid drugs and σ1 receptor cannot account for our results, since the former lacked affinity for σ1 receptors (labeled with [(3)H](+)-pentazocine). A peripheral role for σ1 receptors was also supported by their higher density (Western blot results) in peripheral nervous tissue (dorsal root ganglia) than in several central areas involved in opioid antinociception (dorsal spinal cord, basolateral amygdala, periaqueductal gray, and rostroventral medulla). In contrast to its effects on nociception, σ1-receptor inhibition did not alter fentanyl- or loperamide-induced constipation, a peripherally mediated nonanalgesic opioid effect. Therefore, σ1-receptor inhibition may be used as a systemic or local adjuvant to enhance peripheral μ-opioid analgesia without affecting opioid-induced constipation.
منابع مشابه
Opioid analgesics in palliative care
The discovery of the opioid receptors began in the 1970s and three (μ, δ and κ) are now recognised. Most current opioid analgesics interact preferentially with μ receptors, although some have actions at δ and κ receptors. The revelation that opioid receptors are present on peripheral sensory neurones and immune system cells, has led to the realisation that the opioid system is involved in a hos...
متن کاملThe opioid placebo analgesia is mediated exclusively through μ-opioid receptor in rat.
Placebo analgesia is one of the most robust and best-studied placebo effects. Recent researches suggest that placebo analgesia activated the μ-opioid receptor signalling in the human brain. However, whether other opioid receptors are involved in the placebo analgesia remains unclear. We have previously evoked placebo responses in mice (Guo et al. 2010, 2011) and these mice may serve as a model ...
متن کاملFunctional interaction between TRPV1 and μ-opioid receptors in descending antinociceptive pathway activates glutamate transmission and induces analgesia
The transient receptor potential vanilloid-1 (TRPV1) receptor is involved in peripheral and spinal nociceptive processing and is a therapeutic target for pain. We have shown previously that TRPV1 in the ventrolateral periaqueductal grey (VL-PAG) tonically contributes to brainstem descending antinociception by stimulating glutamate release into the rostral ventromedial medulla and OFF neuron act...
متن کاملThe Peptide PnPP-19, a Spider Toxin Derivative, Activates μ-Opioid Receptors and Modulates Calcium Channels
The synthetic peptide PnPP-19 comprehends 19 amino acid residues and it represents part of the primary structure of the toxin δ-CNTX-Pn1c (PnTx2-6), isolated from the venom of the spider Phoneutria nigriventer. Behavioural tests suggest that PnPP-19 induces antinociception by activation of CB1, μ and δ opioid receptors. Since the peripheral and central antinociception induced by PnPP-19 involve...
متن کاملMediation of opioid analgesia by a truncated 6-transmembrane GPCR.
The generation of potent opioid analgesics that lack the side effects of traditional opioids may be possible by targeting truncated splice variants of the μ-opioid receptor. μ-Opioids act through GPCRs that are generated from the Oprm1 gene, which undergoes extensive alternative splicing. The most abundant set of Oprm1 variants encode classical full-length 7 transmembrane domain (7TM) μ-opioid ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 348 1 شماره
صفحات -
تاریخ انتشار 2014